PCOBL: A Novel Opposition-Based Learning Strategy to Improve Metaheuristics Exploration and Exploitation for Solving Global Optimization Problems

نویسندگان

چکیده

Meta-heuristics are commonly applied to solve various global optimization problems. In order make the meta-heuristics performing a search, balancing their exploration and ability is still an open avenue. This manuscript proposes novel Opposition-based learning scheme, called “PCOBL” (Partial Centroid Learning), inspired by partial centroid. PCOBL aims improve performance through maintaining effective balance between exploitation. was incorporated in three different meta-heuristics, comparative study conducted on 28 CEC2013 benchmark problems with 30, 50, 100 dimensions. addition, we assessed IEEE CEC2011 real-world The empirical results demonstrate that balances exploitation of positively impacting making them outperform state-of-the-art algorithms terms best-error runs convergence most Moreover, computational cost analysis illustrated inclusion meta-heuristic algorithm has low impact its efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION

Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...

متن کامل

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

A FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS

Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...

متن کامل

A teaching learning based optimization based on orthogonal design for solving global optimization problems

In searching for optimal solutions, teaching learning based optimization (TLBO) (Rao et al. 2011a; Rao et al. 2012; Rao & Savsani 2012a) algorithms, has been shown powerful. This paper presents an, improved version of TLBO algorithm based on orthogonal design, and we call it OTLBO (Orthogonal Teaching Learning Based Optimization). OTLBO makes TLBO faster and more robust. It uses orthogonal desi...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3273298